
Semantic Web 0 (2012) 1–0 1
IOS Press

An Architecture of a Distributed Semantic
Social Network
Editor(s): Fabian Abel, Delft University of Technology, The Netherlands; Laura Hollink, Delft University of Technology, The Netherlands;
Geert-Jan Houben, Delft University of Technology, The Netherlands
Solicited review(s): Fabian Abel, Delft University of Technology, The Netherlands; Laura Hollink, Delft University of Technology, The
Netherlands; one anonymous reviewer

Sebastian Tramp ∗, Philipp Frischmuth, Timofey Ermilov, Saeedeh Shekarpour and Sören Auer
Universität Leipzig, Institut für Informatik, AKSW, Postfach 100920, D-04009 Leipzig, Germany
E-mail: {lastname}@informatik.uni-leipzig.de

Abstract. Online social networking has become one of the most popular services on the Web. However, current social networks
are like walled gardens in which users do not have full control over their data, are bound to specific usage terms of the social
network operator and suffer from a lock-in effect due to the lack of interoperability and standards compliance between social
networks. In this paper we propose an architecture for an open, distributed social network, which is built solely on Semantic
Web standards and emerging best practices. Our architecture combines vocabularies and protocols such as WebID, FOAF, Se-
mantic Pingback and PubSubHubbub into a coherent distributed semantic social network, which is capable to provide all crucial
functionalities known from centralized social networks. We present our reference implementation, which utilizes the OntoWiki
application framework and take this framework as the basis for an extensive evaluation. Our results show that a distributed social
network is feasible, while it also avoids the limitations of centralized solutions.

Keywords: Distributed Social Networks, Social Semantic Web, Architecture, Evaluation, WebID, Semantic Pingback

1. Introduction

Online social networking has become one of the
most popular services on the Web. Especially Face-
book with its 845M+ monthly active users and 100B+
friendship relations creates a Web inside the Web1.
Drawing on the metaphor of islands, Facebook is be-
coming more like a continent. However, users are
locked up on this continent with hardly any opportu-
nity to communicate easily with users on other islands
and continents or even to relocate trans-continentally.
Users are bound to a certain platform and hardly have
the chance to migrate easily to another social network-
ing platform if they want to preserve their connections.

*Corresponding author.
WebID: http://sebastian.tramp.name

1http://www.sec.gov/Archives/edgar/data/
1326801/000119312512034517/d287954ds1.htm

Once users have published their personal information
within a social network, they often also lose control
over the data they own, since it is stored on a single
company’s servers. Interoperability between platforms
is very rudimentary and largely limited to proprietary
APIs. In order to keep data up-to-date on multiple plat-
forms, users have to modify the data on every single
platform or information will diverge. Since there are
only a few large social networking players, the Web
also loses its distributed nature. According to a recent
comScore study2, Facebook usage times already out-
number traditional Web usage by factor two and this
divergence is continuing to increase.

We argue that solutions to social networking should
be engineered in distributed fashion so that users are
empowered to regain control over their data. The cur-

2http://allthingsd.com/20110623/
the-web-is-shrinking-now-what/

1570-0844/12/$27.50 c⃝ 2012 – IOS Press and the authors. All rights reserved

http://sebastian.tramp.name
http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm
http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm
http://allthingsd.com/20110623/the-web-is-shrinking-now-what/
http://allthingsd.com/20110623/the-web-is-shrinking-now-what/

2 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

rently vast oceans between social networking conti-
nents and islands should be bridged by high-speed con-
nections allowing data and users to travel easily and
quickly between these places. In fact, we envision the
currently few social networking continents to be com-
plemented by a large number of smaller islands with
a tight network of bridges and ferry connections be-
tween them. Compared with the currently prevalent
centralized social networks such an approach has a
number of advantages:

– Privacy. Users of the distributed semantic social
network (DSSN) can setup their own DSSN node
or chose a DSSN node provider with particularly
strict privacy rules in order to ensure a maximum
of privacy. This would facilitate a competition of
social network operators about the privacy rules
most beneficial for users. Currently, due to the
oligopoly in the social networking market, which
is dominated by big players such as Facebook,
Google or Twitter, privacy regulations are often
more driven by the commercialization interests.

– Data security. Due to the distributed nature it is
more difficult to steal large amounts of private
data. Also, security is ensured through public re-
view and testing of open-standards and to a lesser
extend through obscurity due to closed propri-
etary implementations. As is confirmed very fre-
quently, centralized solutions are always more
endangered of attacks on data security. Even
with the best technical solutions in place, insider
threats can hardly be prevented in a centralized
setting but can not cause that much harm to a
DSSN.

– Data ownership. Users can have full ownership
and control over the use of their data. They are
not restricted to ownership regulations imposed
by their social network provider. Instead DSSN
users can implement fine-grained data licensing
options according to their needs. A DSSN would
moreover facilitate a competition of DSSN node
providers for the most liberal and beneficial data
ownership regulations for users.

– Extensibility. The representation of social net-
work resources like WebIDs and data artefacts is
not limited to a specific schema and can grow
with the needs of the users3. Although extensibil-

3We already experimented with activities like git commits and
comments on lines of source code – both usecases integrate
very well because of the schema-agnostic transport protocols and

ity is also easy to realize in the centralized set-
ting (as is confirmed by various APIs, e.g., Open
Social), a centralized social network setting could
easily prohibit (or censor) certain extensions for
commercial (or political) reasons and thus con-
strain the freedom of its users.

– Reliability. Again due to the distributedness the
DSSN is much less endangered of breakdowns or
cyberterrorism, such as denial-of-service attacks.

– Freedom of communication. As we observed re-
cently during the Arab Spring where social net-
working services helped protesters to organize
themselves, social networks can play a crucial
role in attaining and defeating civil liberties. A
DSSN with a vast amount of nodes is much less
endangered of censorship as compared to central-
ized social networks.

In this paper we describe the main technological in-
gredients for a DSSN as well as their interplay. The se-
mantic representation of personal information is facil-
itated by a WebID profile. The WebID protocol allows
for using a WebID profile for authentication and access
control purposes. Semantic Pingback facilitates the
first contact between users of the social network and
provides a method for communication about resources
(such as images, status messages, comments, activi-
ties) on the social network. Finally, PubSubHubbub-
based subscription services allow for obtaining near-
instant notifications of specific information as WebID
profile change sets and activity streams from people
in one’s social network. Together, these standards and
protocols provide all necessary ingredients to realize a
distributed social network having all the crucial social
networking features provided by centralized ones.

This article is structured as follows: We present our
reference architecture of a distributed social semantic
network in Section 2. Our implementation based on
the OntoWiki framework is demonstrated in Section 3,
while the evaluation results of our approach are dis-
cussed in Section 4. Finally, we give an overview of re-
lated work in Section 5 and conclude with an outlook
on future work in Section 6.

the Linked Data paradigm: https://github.com/seebi/
lib-dssn-php

https://github.com/seebi/lib-dssn-php
https://github.com/seebi/lib-dssn-php

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 3

2. Architecture of a Distributed Semantic Social
Network

In this section, we describe the DSSN reference ar-
chitecture. After introducing a few design principles
on which the architecture is based, we present its dif-
ferent layers, i.e. the data, protocol, service and appli-
cation layers. The overall architecture is depicted in
Figure 1.

2.1. Basic Design Principles

Our DSSN architecture is based on the following
three design principles.

Linked Data. The main protocol for data publishing,
retrieval and integration is based on the Linked Data
principles [4]. All of the information contained in the
DSSN is represented according to the RDF paradigm,
made de-referencable and interlinked with other re-
sources. This principle facilitates heterogeneity as well
as extensibility and enables the distribution of data and
services on the Web. The resulting overall distributive
character of the architecture fosters reliability and free-
dom of communication and leads to more data security
by design.

Service Decoupling. A second fundamental design
principle is the decoupling of user data from services
as well as applications [9]. It ensures that users of
the network are able to choose between different ser-
vices and applications. As a result, this principle en-
ables an even more distributed character of the social
network which stresses the same issues as distributed
Linked Data. In addition, this principle helps users of
the DSSN to distinguish between their own data, which
they share with and license to other people and ser-
vices, and foreign data, which they create by using
these services and which they do not own. This turns
the un-balanced power structure of centralized social
networks upside down by strictly settling the owner-
ship of the data to the user side and allowing access to
that data in an opt-in way, which leads to more privacy.

Protocol Minimalism. The main task for social net-
working protocols is to communicate RDF triples be-
tween DSSN nodes, not to enforce a specific work flow
nor an exact interpretation of the data. This constraint
ensures the extensibility of the data model and keeps
the overall architecture clean and reliable.

2.2. Data Layer

The data layer comprises two main data structures:
resources for the description of static entities and feeds
for the representation and publishing of events and ac-
tivities.

2.2.1. Resources
We distinguish between three main categories of

DSSN resources: WebIDs for persons as well as appli-
cations, data artefacts and media artefacts. The prop-
erties, conditions and roles in the network of these re-
sources are described in the next paragraphs.

WebID [20]4 recently conceived in order to simplify
the creation of a digital ID for end users. Since its focus
lies on simplicity, the requirements for a WebID pro-
file are minimal. In essence, a WebID profile is a de-
referenceable RDF document (possibly even an RDFa-
enriched HTML page) describing its owner5. That is,
a WebID profile contains RDF triples which have the
IRI identifying the owner as subject. The description of
the owner can be performed in any mix of suitable vo-
cabularies and FOAF [7] as the fundamental ‘industry
standard’ which can be extended6. An example WebID
profile comprising some personal information (lines 8-
12) and two rel:worksWith7 links to co-workers
(lines 6-7) is shown in Listing 1.

Apart from the main focus on representing user pro-
files, our architecture extends the WebID concept by
facilitating two additional tasks: service discovery and
access delegation.

Service discovery is used to equip a WebID with re-
lations to trusted services which have to be used with
that WebID. The usage of the WebID itself ensures
that an agent can trust this service in the same way as
she trusts the owner of the WebID. The most impor-
tant service in our DSSN architecture is the Semantic
Pingback service, which we describe in detail in Sec-
tion 2.3.2.

In addition to this service, we introduce access del-
egation for the WebID protocol. WebID access delega-

4Formerly know as the FOAF+SSL best practice [21], the latest
specification is available at http://webid.info/spec/.

5The usage of an IRI with a fragment identifier allows for indi-
rect identification of an owner by reference to the (FOAF) profile
document.

6In theory, FOAF can be replaced by another vocabulary but as a
grounding for semantic interoperability, we suggest to use it.

7Taken from RELATIONSHIP: A vocabulary for describing
relationships between people at http://purl.org/vocab/
relationship.

http://webid.info/spec/
http://purl.org/vocab/relationship
http://purl.org/vocab/relationship

4 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

announce

Application Layer

Profile
Manager

Bookmark
Collection BlogFoto

Sharing

Service Layer

Ping PushSearchUpdate

search5

delegate
access to

announce

Data LayerResources Feeds

Data & Media
Artefacts

WebIDs

indexupdate

ping

...

create

updatecreate push subscribe

1 1

2
3

4

4

5

6

7

7

read access

announce

1

Activity
Streams

History
Feeds

Fig. 1. Architecture of a Distributed Semantic Social Network (without protocol layer): (1) Resources announce services and feeds via links or
header fields, feeds announce services – in particular a push service. (2) Applications initiate ping requests to spin the Linked Data Network. (3)
Applications subscribe to feeds on push services and receive instant notifications on updates. (4) Update services are able to modify resources
and feeds (e.g. on demand of an application). (5) Personal and global search services can index resources and are used by applications. (6) Access
to resources and services can be delegated to applications by a WebIDs, i.e. the application can act in the name of the WebID owner. (7) The
majority of all access operations is executed through standard Web requests.

1 @prefix rdfs:< h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema #
> .

2 @prefix foaf:< h t t p : / / xmlns . com / f o a f / 0 . 1 / > .
3 @prefix rel:< h t t p : / / p u r l . o rg / vocab / r e l a t i o n s h i p / > .
4 < h t t p : / / p h i l i p p . f r i s c h m u t h 2 4 . de / i d / me> a foaf:

Person;
5 rdfs:comment "This is my public profile only,

more information available with FOAF+SSL";
6 rel:worksWith < h t t p : / / s e b a s t i a n . t ramp . name>,
7 < h t t p : / / www. i n f o r m a t i k . uni−l e i p z i g . de / ~ a u e r /

f o a f . r d f #me>;
8 foaf:depiction < h t t p : / / img . f r i s c h m u t h 2 4 . de / p e o p l e

/ me . j p g >;
9 foaf:firstName "Philipp"; foaf:surname "

Frischmuth";
10 foaf:mbox < m a i l t o : f r i s c h m u t h @ i n f o r m a t i k . uni−

l e i p z i g . de>;
11 foaf:phone < t e l :+49−341−97−32368>;
12 foaf:workInfoHomepage < h t t p : / / b i s . i n f o r m a t i k . uni−

l e i p z i g . de / P h i l i p p F r i s c h m u t h >.

Listing 1: A minimal WebID profile with personal
information and two worksWith relations to other
WebIDs.

tion is an enhancement to the current WebID authenti-
cation process in order to allow applications to access
resources and services on behalf of the WebID owner,
but without the need to introduce additional applica-
tion certificates in a WebID. We describe the WebID
protocol as well as our access delegation extension in
detail in Section 2.3.1.

Agents and Applications play an important role in
today’s social networks8. They have access to large
parts of the profile data and can add or change some of
the profile information, e.g. create activity descriptions
or create and link images. Applications on the DSSN
are also identified by using WebID profiles, but are not
described as a person but as an application. They can
act on behalf of a person but rely on delegated access
rights for such an activity. This process is described in
Section 2.3.1.

Data Artefacts are resources on the Web which are
published according to the Linked Data principles.
Data artefacts includes posts, comments, tag assign-
ments, activities and other Social Web artefacts which
have been created by services and applications on the
Web. Most of them are described by using specific Web
ontologies such as SIOC [6], Common Tag9 or Activ-
ity Streams in RDF [11].

Media Artefacts are also created by services and ap-
plications but consist of two parts – a binary data part
which needs to be decoded with a specific codec, and

8Social network games such as FarmVille can have more than 80
million users (according to appdata.com), which constantly cre-
ate activity descriptions.

9http://commontag.org/Specification

appdata.com
http://commontag.org/Specification

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 5

a meta-data part which describes this artefact10. Usu-
ally, such artefacts are audio, video and image files, but
office document types are also frequently used on the
Social Web. Media artefacts can be easily integrated
into the DSSN by using the Semantic Pingback mech-
anism, which is described in Section 2.3.2, and a link
to a push-enabled activity stream. An example photo-
sharing application is described in Section 2.5.

2.2.2. Feeds
Feeds are used to represent temporally ordered

information in a machine-readable way. Feeds are
widely used on the Web and play a crucial role in com-
bination with the PubSubHubbub protocol to enable
near real-time communication between different ser-
vices. In the context of the DSSN architecture, two
types of feeds are worth considering:

Activity feeds describe the latest social network ac-
tivities of a user in terms of an actor - verb -
object triple where activity verbs are used as types
of activities (e.g. to post, to share or to bookmark a spe-
cific object)11. Activity feeds can be used to produce a
merged view of the activities of one’s own social net-
work. In our DSSN architecture, each activity is cre-
ated as a Linked Data resource (i.e. a DSSN data arte-
facts), which links to the actor and object of the activ-
ity. In addition, each activity is equipped with a Ping-
back Server in order to allow for receiving reactions
on this activity (called pingbacks) and thus to spin a
content network between these artefacts.

History feeds are used to allow syndication of change
sets of specific resources between a publisher of a re-
source and many subscribers of the resource. History
feeds describe changes in RDF resources in terms of
added and deleted statements which are boxed in an
Atom feed entry. A subscriber’s social network appli-
cation can use this information to maintain an exact
copy of the original resource for caching and querying
purposes. History feeds are in particular important for
the syndication of changes of WebID profiles (e.g. if a
contact changes its phone number).

10Typically, the user uploads the binary part and the service cre-
ates the meta-data part based on additional form data and extracted
meta-data from the binary part.

11Activity streams (http://activitystrea.ms) are Atom
format extensions to describe activity feeds. It is extensible in a way
that allows publishers to use new verb- or object-type IRIs to identify
site-specific activities.

2.3. Protocol Layer

The protocol layer consists of the WebID identity
protocol and two networking protocols which pro-
vide support for two complete different communica-
tion schemes, namely resource linking and push noti-
fication.

2.3.1. WebID (protocol)
From a more technical perspective, the WebID pro-

tocol [20] incorporates authentication and trust into the
WebID concept. The basic idea is to connect an SSL
client certificate with a WebID profile in a secure man-
ner and thus allowing owners of a WebID to authen-
ticate against 3rd-party websites with support for the
WebID protocol. The WebID (i.e. a de-referencable
URI) is, therefore, embedded into an X.509 certifi-
cate12 by using the Subject Alternative Name (SAN)
extension. The document, which is retrieved through
the URI, contains the corresponding public key. Given
that information, a relying party can assert that the ac-
cessing user owns a certain WebID. Furthermore, the
WebID protocol can provide access control function-
ality for social networks shaped by WebIDs in order
to regulate access to certain information resources for
different groups of contacts (e.g. as presented with dg-
FOAF [18]). An example of a WebID profile, which is
annotated with a public key, is shown in Listing 2. This
WebID profile contains additionally a description of an
RSA public key (line 15), which is associated to the
WebID by using the cert:identity property from
the W3C certificates and crypto ontology (line 19).

13 @prefix rsa: < h t t p : / / www. w3 . org / ns / a u t h / r s a #>.
14 @prefix cert: < h t t p : / / www. w3 . org / ns / a u t h / c e r t #">.
15 [] a rsa:RSAPublicKey;
16 rdfs:comment "used from my smartphone ...";
17 cert:identity < h t t p : / / p h i l i p p . f r i s c h m u t h 2 4 . de / i d /

me>;
18 rsa:modulusc "C41199E ... 5AB5"^^cert:hex;
19 rsa:public_exponent "65537"^^cert:int.

Listing 2: An extension of the minimal WebID
from Listing 1: Description of an RSA public
key, which is associated to the WebID by using
the cert:identity property from the W3C
certificates and crypto ontology.

Nevertheless, the described approach requires the
user to access a secured resource directly, e.g. through

12http://www.ietf.org/rfc/rfc2459.txt

http://activitystrea.ms
http://www.ietf.org/rfc/rfc2459.txt

6 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

a Web browser which is equipped with a WebID-
enabled certificate. However, in the scenario of a dis-
tributed social network this arrangement is not always
the case. If, for example, the software of user A needs
to update its local cache of user B’s profile, it will do so
by fetching the data in the background and not neces-
sarily when user A is connected. An obvious solution
would be to hand out a WebID-enabled certificate to
the software (agent), but then the user needs to create
a dedicated certificate for all tools that have to access
secured information and simultaneously allows all par-
ticipating tools to "steal" her identity, which is not the
preferred solution from a security perspective.

To resolve this dilemma, we have extended the We-
bID protocol by adding support for access delegation.
By delegating access to an agent, a user allows a par-
ticular agent to deputy access-secured information re-
sources. The agent itself authenticates against the re-
lying party by using its own credentials, e.g. by em-
ploying the WebID protocol, too. Additionally, it sends
a X-DeputyOf HTTP header, which indicates that
a resource is accessed on behalf of a certain WebID
user13. The relying party then fetches the WebID and
checks for a statement as shown in Listing 314.

If such a statement is found and the relying party
trusts the accessing agent, then access to the secured
resource is granted. Given that the user is always able
to modify the information provided by her WebID, she
stays in control with regard to the delegation of access
to other parties. In contrast to other access control so-
lutions such as OAuth15, where an API provider needs
to serve and handle access tokens, a user only has to
maintain one single central resource, her WebID.

13We have recently discussed the motivation and solution of this
extension with a few members of the W3Cs WebID community
group (http://www.w3.org/community/webid/) and will
propose a change request to extend the specification regarding ac-
cess delegation.

14The dssn:deputy relation and other related schema re-
sources introduced in this paper are part of the DSSN namespace,
which is available at http://purl.org/net/dssn/.

15http://oauth.net/

20 @prefix dssn: < h t t p : / / p u r l . o rg / n e t / d s sn / >.
21 < h t t p : / / p h i l i p p . f r i s c h m u t h 2 4 . de / i d / me> dssn:deputy

< h t t p : / / myagent . o rg / > .

Listing 3: Access delegation through the
dssn:deputy property.

2.3.2. Semantic Pingback
The purpose of Semantic Pingback [23] in the con-

text of a DSSN architecture is twofold:

– It is used to facilitate the first contact between two
WebIDs and establish a new connection (friend-
ing).

– It is used to ping the owner of different social
network artefacts if there are activities related to
these artefacts (e.g. commenting on a blog post,
tagging an image, sharing a website from the
owner).

The Semantic Pingback approach is based on an ex-
tension of the well-known Pingback technology [10],
which is one of the technological cornerstones of the
overwhelming success of the blogosphere in the Social
Web. The overall architecture is depicted in Figure 2.

The Semantic Pingback mechanism enables bi-
directional links between WebIDs, RDF resources as
well as weblogs and websites in general (cf. Figure 1).
It facilitates contact/author/user notifications in case a
link has been newly established. It is based on the ad-
vertisement of a lightweight RPC service16 in the RDF
document, HTTP or HTML header of a certain Web
resource, which should be called as soon as a (typed
RDF) link to that resource is established. The Seman-
tic Pingback mechanism allows casual users and au-
thors of RDF content, of weblog entries or of an article
in general to obtain immediate feedback when other
people establish a reference to them or their work, thus
facilitating social interactions. It also allows to pub-
lish backlinks automatically from the original WebID
profile (or other content, e.g. status messages) to com-
ments or references of the WebID (or other content)
elsewhere on the Web, thus facilitating timeliness and
coherence of the Social Web.

As a result, the distributed network of WebID pro-
files, RDF resources and social websites can be much
more tightly and timelier interlinked by using the Se-
mantic Pingback mechanism than conventional web-
sites, thus rendering a network effect, which is one
of the major success factors of the Social Web. Se-
mantic Pingback is completely downwards compati-
ble with the conventional Pingback implementations,
thus allowing the seamless connection and interlink-
ing of resources on the Social Web with resources on

16In fact, we experimented with different service endpoints. Based
on the results, which are described in more detail in [22], we now
prefer simple HTTP post requests which are not compatible with
standard XML-RPC pingbacks.

http://www.w3.org/community/webid/
http://purl.org/net/dssn/
http://oauth.net/

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 7

RPC Layer

Resource Layer
Linking Resource

(Source)
Linked Resource

(Target)
(typed) linking

observes

announces

RPC request

autodiscovery

fetches

1

2

3

4

5

(updates)

6

Publisher

Link Reveiver

Pingback Server

Link Publisher

Pingback Client
(Link Propagator)

(notifies)

7

Fig. 2. Architecture of the Semantic Pingback approach: (1) A linking resource links to another (Data) Web resource, here called linked resource.
(2) The Pingback client is either integrated into the data/content management system or realized as a separate service, which observes changes
of the Web resource. (3) Once the establishing of a link has been noted, the Pingback client tries to auto-discover a Pingback server from the
linked resource. (4) If the auto-discovery has been successful, the respective Pingback server is used for a ping. (5) In order to verify the retrieved
request (and to obtain information about the type of the link in the semantic case), the Pingback server fetches (or de-references) the linking
resource. (6 + 7) Subsequently, the Pingback server can perform a number of actions such as updating the linked resource (e.g. adding inverse
links) or notifying the publisher of the linked resource (e.g. via email).

the DSSN. An extension of our example profile with
Semantic Pingback functionality making use of an ex-
ternal Semantic Pingback service is shown in List-
ing 4. In line 23, the subject resource is linked with the
ping:to relation to the Semantic Pingback service.

As requested by our third DSSN design paradigm
(protocol minimalism), Semantic Pingback is a generic
data networking protocol which allows to spin rela-
tions between any two Social Web resources. In the
context of the DSSN Architecture, Semantic Pingback
is used in particular for friending, commenting and
tagging activities.

Friending is the process of establishing a symmetric
foaf:knows relation between two WebIDs. A rela-
tionship is approved when both persons publish this re-

22 @prefix ping: < h t t p : / / p u r l . o rg / n e t / p i n g b a c k / >.
23 < h t t p : / / p h i l i p p . f r i s c h m u t h 2 4 . de / i d / me> ping:to <

h t t p : / / p i n g b a c k . aksw . org >.

Listing 4: Extension of the minimal WebID profile
from Listing 1: Assignment of an external Semantic
Pingback service which can be used to ping this
specific resource.

lation in their WebIDs. A typical friending work flow
can be described by the following steps:

– Alice publishes a foaf:knows relation to Bob
in her WebID profile.

– Alice’s WebID hosting service pings Bob’s We-
bID to inform Bob about this new statement.

– Bob receives a message from his Pingback Ser-
vice.

– Bob can approve this relation by publishing it in
his WebID profile, which sends again a ping back
to Alice17.

This basic model of communication can be applied
to different events and activities in the social network.
Table 1 lists some of the more important pingback
events18. In any case, the owner of these resources can
be informed about the event and in most cases specific
actions should be triggered (refer to Section 3 for more

17Please note that the Semantic Pingback protocol does not en-
force any specific reaction on a certain relation type or any reaction
at all.

18The prefix sioct refers to the SIOC types ontology module
namespace (http://rdfs.org/sioc/types#) while ctag
refers to the Common Tag Ontology namespace (http://
commontag.org/ns#). The prefix aair refers to the Atom Ac-
tivity Streams RDF mapping ontology (http://xmlns.notu.
be/aair#).

http://rdfs.org/sioc/types#
http://commontag.org/ns#
http://commontag.org/ns#
http://xmlns.notu.be/aair#
http://xmlns.notu.be/aair#

8 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

Table 1
Typical RDF statements which can cause ping activities.

source resource object property target resource description

WebID (foaf:Person) foaf:knows WebID (foaf:Person) friending
sioct:Comment sioc:about foaf:Image commenting an image (or any other resource)

sioc:Post sioc:reply_of sioc:Post replying to a (friends) post
ctag:Tag ctag:tagged * any resource is tagged by a user

aair:Activity aair:activityObject * any resource is object of an activity

details). However, a specific reaction is not enforced
by the protocol.

2.3.3. PubSubHubbub
PubSubHubbub19 is a web-hook-based publish/sub-

scribe protocol, as an extension to Atom and RSS,
which allows for near instance distribution of feed en-
tries from one publisher to many subscribers. Since
feed entries are not described as RDF resources, Pub-
SubHubbub is not the best solution as a transport pro-
tocol for a DSSN from a Linked Data perspective.
However, PubSubHubbub with atom feeds is widely in
use and has good support in the Web developer com-
munity which is why we decided to use it in our archi-
tecture. Similar to Semantic Pingback, it is agnostic to
its payload and can be used for all publish/subscribe
communication connections.

The main work flow of establishing a PubSubHub-
bub connection can be described as follows: The feed
publisher advertises a hub service in an existing feed.
A subscriber follows this link and requests a subscrip-
tion on this feed. If the feed changes, the feed publisher
informs the hub service which instantly broadcasts the
changes to all subscribers20. The main advantage of
this communication model is to avoid frequent and un-
necessary pulls of all interested subscribers from this
feed and to allow a faster broadcast to the subscriber.

In the DSSN architecture, two specific feeds are im-
portant and interlinked with a WebID to allow for sub-
scriptions: activity feeds which are used for activity
distribution and history feeds which are used for re-
source synchronization.

Activity Description Distribution is a fundamental
communication channel for any social network. A per-
sonal activity feed publishes the stream of all activ-
ities on social network resources (artefacts and We-

19http://code.google.com/p/pubsubhubbub/
20During the subscription a callback endpoint is supplied by the

subscribing endpoint, which is later used for pushing the data.

bIDs) with a specific user as the actor. These activity
descriptions can and should be created by any appli-
cation which is allowed to update the feed (ref. access
delegation). In addition, activity feeds can be created
for data and media artefacts in order to allow object-
centered push notification. Typically, activity feed up-
dates are pushed to a personal search / index service of
a subscribed user (see next section).

Resource Synchronization is an additional commu-
nication scheme based on feeds. It is required, espe-
cially in distributed social networks, to take into ac-
count that relevant data is highly distributed over many
locations and that access to and querying of this data
can be very time-consuming without caching. A prop-
erly connected resource synchronization tackles this
problem by allowing users to subscribe to changes of
certain resources over PubSubHubbub. For a WebID,
this process can be included into the friending process,
while for other resources a user can subscribe manu-
ally (e.g. if a user is member of a certain group, then
she may subscribe to the feed of a group resource to
receive updates). Resource synchronization is a well-
known topic when dealing with distributed resources.
We have designed our data model as Linked Data up-
date logs [2] based on the work previously published
by the Triplify project21.

2.4. Service Layer

Services are applications which are part of the
DSSN infrastructure (in contrast to applications from
the application layer). WebIDs can be equipped with
different services in order to allow manipulation and
other actions on the user’s data by other applications.
As depicted in Figure 1, we have defined four essential
services for a DSSN.

21http://triplify.org

http://code.google.com/p/pubsubhubbub/
http://triplify.org

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 9

Ping Service
The ping service provides an endpoint for any in-

coming pingback request for the resources of a user.
First and foremost, it is used with the WebID for
friending but also for comment notification and discus-
sions.

One application instance can provide its services
for multiple resources. In a minimal setup, a ping ser-
vice provides only a notification service via email. In
a more complex setup, the ping service has access to
the update service of a user (via access delegation) and
can do more than sending notification.

A ping service can be announced with the ping:to
relation as shown in Listing 4.

Push Service
The push service is used for activity distribution

and resource synchronization. Both introduced types
of feeds announce its push service in the same way
as using the rel="hub" link in the feed head. Since
both types of feeds are valid atom feeds, a DSSN push
service can be a standard PubSubHubbub-based in-
stance.

To equip social network resources with its cor-
responding activity and history feeds, we have de-
fined two OWL object properties which are sub-
properties of the more generic sioc:feed relation
from the SIOC project [6]: dssn:activityFeed
and dssn:syncFeed.

In addition to these RDF properties, DSSN agents
should pay attention to the corresponding HTTP
header fields X-ActivityFeed and X-SyncFeed,
which are alternative representations of the OWL ob-
ject properties to allow the integration of media arte-
facts without too much effort.

Search and Index Service
Search and index services are used in two different

contexts in the DSSN architecture.

1. They are used to search for public Web resources,
which are not yet part of a user’s social network.
These search services are well-known semantic
search engines as Swoogle [8] or Sindice [25].
They use crawlers to keep their resource cache
up-to-date and provide user interfaces as well as
application programming interfaces to integrate
and use their services in applications.
In our architecture, these public services are used
to search for new contacts as well as other arte-
facts in the same way as people can use a stan-
dard Web search engine. The main advantage in

using Semantic Web search engines lies in their
ability to use graph patterns for a search22.

2. In addition to public search services, we want to
emphasize the importance of private search ser-
vices in our architecture. Private search services
are used in order to have a fast resource cache not
only for public, but also for private data which a
user is allowed to access.
A private search service is used for all users and
queries from applications which act on behalf of
the user. The underlying resource index of a pri-
vate search service is used as a callback for all
push notifications from feeds to which the user
has subscribed. That is, she is able to query over
the latest up-to-date data by using her private
search service. In addition, she can query for data
which has never been public and is published for
a few people only.

Since private search services are used by applica-
tions which act on behalf of the user, they must be
WebID-protocol-enabled. That is, they accept requests
from the user and her delegated agents only. In addi-
tion, applications need to know which private search
service should be accessed on behalf of the user. This
mode is again made possible by providing a link from
the WebID to the search service23

In our architecture we assume that search services
accept SPARQL queries.

Update Service
Finally, an update service provides an interface to

modify and create user resources in terms of SPARQL
update queries. In the same way as private search ser-
vices, update services are secured by means of the We-
bID protocol and accept requests only by the user itself
and by agents in access delegation mode24.

Typical examples of how to use this service are the
creation of activities on behalf of the user or the mod-
ification of the user’s WebID, e.g. by adding a new
foaf:knows relation.

22A motivating example in our context is the search for
resources of type foaf:Person, which are related to the
DBpedia topic dbpedia:DataPortability (e.g. with the
foaf:interest object property).

23In our prototypes we use a simple OWL object prop-
erty dssn:searchService, which is a sub-property of
dssn:trustedService. We assume that such an easy vocabu-
lary is only the first step to a fully featured service auto-discovery
ontology and consider all dssn terms as unstable.

24We defined dssn:updateService as a relation between a
WebID and an update service.

10 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

In the next section, we give a detailed description of
the service interplay and usage by applications.

2.5. Application Layer

Social Web applications create and modify all kinds
of resources for a user. In our architecture, they have
to use the trusted services which are related to a We-
bID instead of their own. Since access to these services
is exclusively delegated by the user to an application,
the user has full control over her data25. To illustrate
how DSSN applications work with a WebID and its
services, we will describe a simple photo-sharing ap-
plication:

When a user creates an account on this service, she
uses her WebID for the first login and delegates access
to this application. The application analyses the We-
bID and discovers the trusted services and some meta-
data of the user (e.g. name, short bio and depiction).
The user then uploads her first image to the applica-
tion. The application creates a new image resource and
an activity stream for that resource. After that, the ap-
plication creates two activities for the user: one in the
stream of the image resource and one in the personal
stream of the user, employing the recently delegated
access right26. Furthermore, it equips the newly up-
loaded image with the pingback service of the user;
thus enabling the image for backlinks and comments.
New comments can arrive from everywhere on the
Web, but the application also provides its own com-
menting service (integrated in the image Web view). If
another user writes a comment on this image, a data
artefact is created in the namespace of the application
and a ping request is sent to the user’s pingback service
(since this service is related to the image).

This simple example demonstrates the interplay and
rules of the DSSN service architecture. A more com-
plex social network application is described in the next
section.

25At the moment we distinguish only between access and no ac-
cess to a service. As an extension, we can imagine that a private
search service can handle access on parts of the private Social Graph
differently (an online game does not need to know which other ac-
tivities you pursue on the Web). Access policies for RDF knowledge
bases is a topic of ongoing research and we hope that the results of
this research area can be adapted here.

26This activity in the users stream is instantly pushed to all of the
user’s friends and is not part of the data of the image publishing
service.

3. DSSN Implementation for OntoWiki

We provide a prototypical implementation of our ap-
proach which utilizes the OntoWiki application frame-
work [3]. OntoWiki is a Semantic data wiki as well as
Linked Data publishing engine. The prototypical im-
plementation is also the basis for the evaluation in Sec-
tion 4. All features were realized by employing the
extension mechanisms offered by OntoWiki. A main
feature of OntoWiki is its storage layer independence.
This means that an OntoWiki setup can use a high-
performance RDF triple store (e.g. Openlink Virtu-
oso27) for knowledge bases up to the size of the DB-
pedia project [12] as well as a MySQL backend with a
SPARQL2SQL query rewriter for small and mid-size
knowledge bases. We tested and used the DSSN im-
plementation with both backends.

The prototype described here, can be summarized as
a WebID provider with an integrated communication
hub. The following features are implemented so far:

– Users can create and manage their WebID profiles
and any other Linked Data enabled resource (see
Section 3.1).

– Users can make friends, subscribe to their activ-
ities and profile updates and receive changes in-
stantly on change (see Section 3.2).

– Users can search and browse for friends and ac-
tivities inside their social network as well as fil-
ter these resources by facets based on object and
datatype properties (see Section 3.3).

– Users can comment on and subscribe to any
DSSN resource which is equipped with a Seman-
tic Pingback service or a PubSubHubbub-enabled
activity stream (see Section 3.4).

– Users receive notifications if someone comments
or links her WebID and send a pingback notifica-
tion (see Section 3.5).

We describe the implementation of these features and
provide insights into our rationale for choosing certain
technologies. An commented screenshot of the central
activity stream interface can be seen on Figure 3.

3.1. Creating and Updating Data Artefacts

Creating and managing Linked Data enabled RDF
resources can be achieved without modifying the On-
toWiki basic functionality. We employ the RDFau-

27http://virtuoso.openlinksw.com/

http://virtuoso.openlinksw.com/

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 11

2
1

4

3

5

6

Fig. 3. Screenshot of the OntoWiki DSSN activity stream view. The interface elements are: (1) The Share it! activity creation module where
users can post status notes and share links and media artefacts. (2) The main interface view tab to switch between configuration screen, profile
manager, friending interface and the activity stream. (3) The activity filter and search module, to allow a facet-based browsing of activities. (4)
The events module, which queries the cache social network data for birthdays and other events. (5) The activity stream, which is the result of the
SPARQL query modified by the filter module. (6) The generic wiki interfaces to create any type of Linked Data resource (e.g. comments).

thor [24] JavaScript widget library in order to auto-
matically create forms out of RDFa annotated HTML
documents28. Without any user effort, a newly created
resource will be Linked Data enabled if it shares the
namespace of the OntoWiki installation. In addition
to that, we added support for WebID authentication
as well as for certificate creation by implementing a
dedicated WebID extension. Since there is quite some
cryptographic processes involved, this extension needs
some prior configuration steps, e.g. the OntoWiki in-
stance needs to be configured as a SSL/TLS enabled
Web application.

3.2. Maintaining Social Network Connections

In order to maintain friend connections and other
social network connections we execute the following
steps in our implementation:

1. When a user enters a WebID inside the friend-
ing module, OntoWiki add a new statement
(foaf:knows) into the RDF graph containing
the users profile data. This automatically gener-

28Each output page, which is created by OntoWiki, is RDFa en-
hanced.

ates a Pingback request so the new friend will be
notified.

2. The corresponding OntoWiki creates a new RDF
graph, which will act as a cache for the WebID
profile data about that particular friend. This new
Knowledge Base is configured in such a way, that
it is imported into the users graph automatically.

3. The wiki fetches the data from the friends WebID
by employing the Linked Data principles. The
newly generated graph caches that data in order
to enhance the performance. Since those infor-
mation is stored in a separate graph, a synchro-
nization is trivial.

4. Finally, the wiki is subscribed to these feeds if
they are published within the users profile: (1)
The users activity feed, which the wiki uses to
create the network activity timeline for the user.
The incoming atom activity entries are trans-
formed to AAIR resources and imported to an
additional activity RDF graph. (2) The history
feed for the friends’ profile. This feed is em-
ployed in order to keep the cached WebID profile
data up-to-date.

12 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

3.3. Ignoring Activities and WebIDs

Since a user may not be interested in all activities
of her friends (e.g. gaming activities), we offer func-
tionality to hide certain activities in the timelines that
visualize the activity streams to which a user is sub-
scribed. We therefore employ EvoPat [15], a pattern-
based approach for the evolution and refactoring of
RDF knowledge bases. EvoPat is integrated also as
an OntoWiki extension and in conjunction with our
DSSN implementation we apply this component to al-
low users to clean up their timelines.

Each time a user selects a Hide all activities . . . but-
ton next to an activity, we create a new pattern, which
subsequently matches such statements in the graph and
removes them. Possible hide patterns are generated
from the activity data itself, for instance . . . from this
user, . . . of this language or . . . about this object. Once
new data for a given user is added, we re-apply the pat-
tern. In this way it also applies for future changes of
the knowledge base.

3.4. Generating and Distributing Activities

A user is able to generate different kinds of activities
in our implementation. In the current state we support
three types of activities: status updates, photo sharing
as well as link recommendations. We implemented a
small extension, which displays a Share It! module in-
side the OntoWiki user interface. As a result the user
can quickly access this functionality so that sharing is
facilitated for the user. Once the user generates an ac-
tivity, her activity feed is updated and subscribers to
that feed are delivered with the new content by the
push service.

3.5. Pingback Integration

All activities are represented as Linked Data re-
sources that refer to a Pingback service and a corre-
sponding activity feed. Thus, users can comment on
any resource in their own social application and ad-
ditionally subscribe to changes to that resource (e.g.
comments by others). Each time someone comments
on a resource (or otherwise links to it on the Linked
Data Web), a Pingback request is sent to the owning
OntoWiki instance. Consequently the publisher gets
notified and is able to react again on that new activity,
which facilitates conversations in a distributed man-
ner. If a user is subscribed to a resource activity feed
(which is automatically done, once she comments on a

particular resource), she gets notified about other com-
ments, even if she is not the commenting person or the
owner of the resource.

4. Evaluation

We divided our evaluation process into two inde-
pendent parts: Firstly, the qualitative evaluation part
aims to prove the functionality of the DSSN architec-
ture by assessing use cases from the Social Web acid
test (Section 4.1). Secondly, the quantitative evalua-
tion part aims to prove the real-world usefulness of
our prototypical implementation by testing the perfor-
mance and distribution of data in the social network
(Section 4.2). This evaluation is carried out by using a
social network simulation approach (Section 4.2.1).

4.1. Qualitative Evaluation: Social Web Acid Test

The Social Web Acid Test (SWAT) is an integration
use case test conceived by the Federated Social Web
Incubator Group of the W3C. Currently, only the first
and very basic level of the test (SWAT029) has been de-
veloped and described completely. Nevertheless, those
parts of the next level (SWAT1) which are currently
published are discussed here too.

SWAT0: The objectives of the first SWAT level have
been specified in the following use case30:

1 User A takes a photo of user B from her phone
and posts it.

2 User A explicitly tags the photo with user B.
3 User B gets notified that she is in a photo.
4 User C who follows user A gets the photo.
5 User C leaves a comment on the photo.
6 User A and user B get notified about the

comment.

Listing 5: Social Web Acid Test - Level 0

Utilizing all technologies described before, our
DSSN architecture passes the SWAT0 without any

29http://www.w3.org/2005/Incubator/
federatedsocialweb/wiki/SWAT0

30For this use case the following assumptions are made: (1) Users
employ at least two (ideally, three) different services each of which
is built with a different code base. (2) Users only need to have one
account on the specific service of their choice. (3) Ideally, partici-
pants A, B, and C use their own sites (personal URLs).

http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT0
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT0

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 13

problems. The following enumeration describes the
corresponding steps:

1. User A takes a photo of user B and uploads
it (e.g. with the example application from Sec-
tion 2.5): The Web space returns a link to the
user’s pingback server in the HTTP header of the
uploaded image.

2. User A explicitly tags the photo with user B: This
is done by creating a tag resource (ctag:Tag)
which links both to the image and to the WebID
of user B. A pingback client sends a ping request
to all of these resources after publishing the tag
on the Web.

3. User B is notified that she is on a photo: The noti-
fication is created by the pingback service of user
B who has received a request from the tagging
application which was used by user A.

4. User C, who follows user A, receives the photo:
User C is instantly provided with an update in
her activity stream, informing her about the new
image.

5. User C leaves a comment on the photo: This is
done in the same way as publishing the tag.

6. User A and user B are notified about the com-
ment: User A will be notified because her ping-
back service informs her about this ping. User B
will be notified only if she has subscribed to the
activity feed of the photo provided that it exists.
However, both notifications are optional and are
not sent automatically.

SWAT1 is currently not finally defined31, so an eval-
uation can be a rough sketch only. The next SWAT
level will require a few different use cases which intro-
duce some new Social Web concepts. However, most
of the user stories are satisfied already as a conse-
quence of the fully distributed nature of the DSSN ar-
chitecture (e.g. data portability and social discovery).
The more interesting user stories are: (1) The Private
content and Groups use cases will require a distributed
ACL management. Some ideas on using WebIDs for
group ACL management are already published with
dgFOAF [18] and we think that this is a good starting
point for further research. (2) The Social News use case
introduces a new vote activity. Since our architecture
applies schema agnostic social network protocols, this

31Available online at http://www.w3.org/2005/
Incubator/federatedsocialweb/wiki/SWAT1_use_
cases (receive 29.07.2011).

new type of activity can be communicated as any other
activity.

4.2. Quantitative Evaluation: DSSN Performance

Our next aim was to evaluate the architecture in
quantitative terms. Based on the proposed architecture,
a DSSN will be distributed over hundreds of servers.
These social network nodes will have hardware spec-
ifications which can range from very light-weight
(e.g. plug computers as proposed by the Freedom-
Box32 project, smartphones and small virtual hosts) to
medium and heavy class systems (e.g. cloud instances,
hosted services and full root servers). Each of these
nodes accesses only a small part of the complete so-
cial network graph since the information is shared only
with the connected nodes.

Consequently, we need to pose the following ques-
tions in our quantitative evaluation:

1. How many incoming triples need to be cached
from an averagely connected node in a week of
average social network activity?

2. If a DSSN node queries these incoming triples
with SPARQL, are the queries fast enough to pro-
vide the data for the user interface on such weak
hardware?

To answer these research questions, we created an
evaluation framework that allows for simulating the
traffic within a DSSN. We apply this framework to
measure the performance of our DSSN in a testbed us-
ing a large social network dataset.

4.2.1. Evaluation Framework Architecture
We decided to use a simulation approach in which

activities are created artificially (but based on real data,
see Section 4.2.2) on the social network rather than ar-
ranging a user evaluation, which strongly depends on
the graphical user interface. In a first step, we added
an additional service for remote procedure calls to the
OntoWiki DSSN node as well as an execution client
(replay agent) which can inject activities remotely con-
trolled and based on input activity data in RDF. Then
we used the public Twitter dataset described in [1] and
transformed it to an RDF graph as a base for a replay
of activities of type status note.

The workflow of the evaluation framework is de-
picted in Figure 4. It has a pipeline architecture which
is built by using three additional tools that help us to

32http://www.freedomboxfoundation.org/

http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases
http://www.freedomboxfoundation.org/

14 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

Profile Data

Activities
Network and

Activity Dump

Triplify

Profile
Distributor Replay Agents

1 2 3 4

Fig. 4. Workflow of the social network evaluation framework: (1) An activity and profile graph is preprocessed and dumped as RDF. (2) The
knowledge base is split up into a part for every single profile and can be distributed to a list of server machines. (3) For each profile, a replay
agent is initialized which will create and update a specific profile as well as activities on a single social network node. (4) The social network
node (in our case an OntoWiki instance) connects to other nodes as well as creates activities for the social network in the same way as it would
be achieved under control of a human user.

generate and manage the generated replay agent test
data. The generated data was processed by the pro-
file distributor which splits the data into separate user
profiles, each with personal data and activities. Af-
ter splitting the data into single parts, the profile dis-
tributor passes each part on to a corresponding replay
agent. Upon call the replay agent can instantiate a new
OntoWiki-based DSSN node with the given user pro-
file and activities.

4.2.2. Data Generation and Testbed Configuration
In a first step, we used Triplify [2] to generate the

activity data from the relational database. The database
consists of 2.3M public tweets fetched from 1701
Twitter accounts over a time frame of two months. For
each posted tweet, we created a status note resource
description and added two SIOC properties to link the
creator account and publish the creation timestamp. In
addition to that, we linked each status note to the Twit-
ter terms of services to demonstrate the usage of li-
censing in our architecture (the data ownership issue
from the Introduction)33. Listing 6 shows an example
status note resource taken from the database34.

For the creation of the corresponding activities we
intepreted re-tweets as sharing and (original) tweets
as posting activities and assigned different activity
verbs based on the data. Each activity is linked to a
FOAF person resource (without WebID specific en-
hancements) which we additionally enriched with a
random foaf:birthday.

33Licensing statements can be easily added to any resource in the
DSSN, e.g. by using the dct:license property.

34The Listings in this section use the prefixes aair, dct, sioc,
rdfs, xsd, atom and foaf which are well known or already ref-
ered in this paper. The base prefix swj refers to the namespace

1 swj:o5516682621620224 a aair:Note;
2 rdfs:seeAlso < h t t p : / / t w i t t e r . com / # ! / y o u n g g l o b a l /

s t a t u s /5516682621620224 >;
3 sioc:created_at "2010-11-19T08:04:14"^^xsd:

dateTime;
4 sioc:has_creator swj:youngglobal;
5 dct:license < h t t p : / / t w i t t e r . com / t o s >;
6 aair:content "I’m at Norwood (241 W 14th St, btw

7th & 8th, New York) w/ 5 others. http://4sq
.com/66OndN".

7
8 swj:a5516682621620224 a aair:Activity;
9 atom:published "2010-11-19T08:04:14"^^xsd:

dateTime;
10 aair:activityActor swj:youngglobalPerson;
11 aair:activityVerb aair:Post;
12 aair:activityObject swj:o5516682621620224.

Listing 6: Example status note resource and
corresponding activity.

1 swj:youngglobal a sioc:UserAccount;
2 sioc:name "youngglobal";
3 sioc:account_of swj:youngglobalPerson;
4 rdfs:seeAlso < h t t p : / / t w i t t e r . com / y o u n g g l o b a l >.
5
6 swj:youngglobalPerson a foaf:Person;
7 foaf:name "youngglobal";
8 foaf:knows swj:RdubuchePerson;
9 foaf:birthday "01-31";

10 foaf:depiction < h t t p : / / a2 . twimg . com /
p r o f i l e _ i m a g e s / 1 1 5 2 0 0 4 6 1 4 /
p ip_2825_0370_normal . j p g >;

11 foaf:account swj:youngglobal.

Listing 7: Example user account and FOAF person
resource.

http://dssn.lod2.eu/SWJ2012/, where the generated data
set is available for download.

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 15

Listing 7 shows the user account and FOAF person
resource which is linked from the activity in Listing 6.

In order to evaluate the query performance on dif-
ferent types of DSSN nodes in our architecture, we ex-
tracted four exemplary queries, which are crucial for
rendering the user interface depicted in Figure 3.

Query Q1 asks for an ordered list of the last ten status
posts of a given time frame. The query is exemplary for
fetching a resource list based on a given user defined
configuration. The query is used for area 2 on Figure 3
and is typically followed by a query which fetches the
needed data of exactly these ten activities (rather than
doing both in one single query).

1 SELECT DISTINCT ?r
2 WHERE {
3 ?r a aair:Activity.
4 ?r atom:published ?pub.
5 ?r aair:activityObject ?aairObject.
6 ?aairObject a aair:Note.
7 FILTER
8 (?pub >= "2010-12-01T00:00:00"^^xsd:dateTime)
9 FILTER

10 (?pub <= "2010-12-01T23:59:59"^^xsd:dateTime)
11 }
12 ORDER BY ?pub
13 LIMIT 10

Listing 8: Ordered list of the last ten status posts (Q1).

Query Q2 is used to build the facet-based exploration
module depicted in area 3 on Figure 3. It asks for all
values of a specific exploration facet of the activities
of a given time frame. The query that is depicted in
Listing 9 asks for the used verbs in the selected set
of activities (possible verbs are post, share, comment
etc.).

1 SELECT DISTINCT ?verb
2 WHERE {
3 ?r a aair:Activity.
4 ?r atom:published ?pub.
5 ?r aair:activityObject ?aairObject.
6 ?aairObject a aair:Note.
7 ?r aair:activityVerb ?verb.
8 FILTER
9 (?pub >= "2010-12-01T00:00:00"^^xsd:dateTime)

10 FILTER
11 (?pub <= "2010-12-01T23:59:59"^^xsd:dateTime)
12 }}

Listing 9: A list of verbs connected to a list of activities
(Q2).

Query Q3 is used to fetch the list of the next five
upcoming birthdays together with the associated per-
son. Since foaf:birthday values are of datatype
xsd:string, a string comparison has to be exe-
cuted. Query 3 (see Listing 10) is used for area 4 on
Figure 3.

1 SELECT DISTINCT ?person ?bday
2 WHERE {
3 ?person a foaf:Person.
4 ?person foaf:birthday ?bday.
5 FILTER (xsd:string(?bday) >= xsd:string("01-29"))
6 }
7 ORDER BY ASC(?bday)
8 LIMIT 5

Listing 10: List the next five upcoming birthdays (Q3).

Query Q4 is applied to prepare a human readable la-
bel for all the resources which are currently visible in
the interface. This includes schema resource as well as
instance data. The query uses a list of resources (line
5) and a list of possible label attributes (line 6) and
fetches them in a vertical result set (e.g. with a minimal
amount of projection variables). The client receives the
data and has to select a value based on an ordered inter-
nal list (e.g. a foaf:name value is preferred over an
rdfs:label value, because the latter is more gen-
eral). This query strategy is especially useful in combi-
nation with incomplete data (e.g. use the foaf:nick
if you do not have a foaf:name).

1 SELECT DISTINCT ?s ?p ?o
2 FROM <http://aksw.org/>
3 WHERE {
4 OPTIONAL {?s ?p ?o.}
5 FILTER(sameTerm(?s, <...>) || sameTerm(?s, <...>)

|| ...)
6 FILTER(sameTerm(?p, skos:prefLabel) || sameTerm(?p,

dc:title) || sameTerm(?p, dct:title) ||
sameTerm(?p, foaf:name) || sameTerm(?p, aair:
name) || sameTerm(?p, sioc:name) || sameTerm(?
p, rdfs:label) || sameTerm(?p, foaf:
accountName) || sameTerm(?p, foaf:nick) ||
sameTerm(?p, foaf:surname) || sameTerm(?p,
skos:altLabel))}

Listing 11: Ask for all known title attributes for a given
list of resources (Q4).

Since one of the ideas of a distributed social net-
work is the usage of low-end hardware, which every-
one can afford or which already exists in most house-

16 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

holds (e.g. DSL router or WLAN access points), we
defined three prototypical categories of DSSN nodes
where for which we would like to test the query per-
formance:

A server is a typical host in a computing center
which can be used for a rental fee per month. Privacy is
moderatly preserved on such a system since the com-
puting center staff can access the system. This category
of DSSN node is used mostly by people with a strong
technical background. In this category, we tested a Vir-
tuoso 6.1.4 backed OntoWiki DSSN node on a dual
core 2.4GHz system, with 4GB of RAM and an SSD.

A FreedomBox is a personal server running on a
low-end system in an area where the users privacy can
be preserved (e.g. as a DSL router in his household).
No-one else has access to the system which runs 24
hours a day in the same way a server does. In this cate-
gory, we used a virtual machine with 1GB of memory,
one core and a 25% CPU limitation from the server
system above. In addition to that, we limited the triple
store process to 300MB of RAM.

Smartphones are very important for social network
activities today, but they are used mostly as a thin client
without a backend. We argue that connection stability
and battery issues will be solved in the near future and
smartphones can be used as first class DSSN nodes.
In this category, we used an in-browser JavaScript API
store based on rdfQuery35 and deployed the data and
the store without a frontend on an iPhone 4S.

4.2.3. Results and Discussion
As described in Section 4.2.2, the testbed consists

of 1701 DSSN node profiles with 2.3M activities. We
first looked, how this data was shared over these DSSN
nodes to overview what amount of data these nodes
have to store. Regarding this, two characteristic indices
are important: (1) the number of activities of an ac-
count and (2) the number of related accounts which
will receive these activities.

Figure 5 shows a scatter plot where each account
corresponds to one point. The x axis represents the
number of foaf:knows relations to other persons
from the testbed network and the y axis depicts the
amount of triples which are produced with the node’s
frontend (profile triples and activity triples).

Given this plot, we assume that the amount of
friendship relations of an account and the amount of
activities of an account do not correlate with each
other. Since the given raw data included extreme val-

35https://github.com/alohaeditor/rdfQuery

● ●●● ●●●●●●● ●●● ● ●●● ●●● ●●●●●●● ●

● ● ● ● ● ● ●●

● ● ● ● ●

● ● ● ● ●

● ●● ● ● ● ●
● ● ● ●●●● ●

● ●● ● ● ●
●● ● ● ●

● ● ● ● ●
●●● ●● ● ● ●● ●

●● ●●●● ●●
● ● ●● ●● ● ● ●● ●● ● ● ●● ● ● ● ●●●● ● ●● ● ● ●● ●● ●●● ● ●● ● ●●● ● ●● ● ● ●● ● ●● ● ● ● ●● ● ● ● ●● ● ●●● ● ● ●● ● ● ●●●● ● ● ●● ●● ● ● ● ● ●● ● ● ● ● ●● ●●● ● ●●● ●● ● ● ●● ●● ● ● ● ●● ●●● ●● ●●● ● ●● ● ● ●● ● ● ● ● ●● ●●● ● ●● ●● ● ● ●●●●● ●● ●● ● ●●● ●● ●● ● ● ●●● ● ●● ●●● ● ● ●● ● ● ● ●● ● ● ●●● ● ●●● ●● ●● ● ●● ● ●● ●●● ● ● ● ● ●● ●●● ● ●●● ● ●●● ●●● ● ● ● ● ● ● ●● ● ● ● ● ●●● ● ● ● ● ●● ● ● ● ● ● ●●● ●●● ●●●● ●● ●● ● ● ●●●● ●● ● ●● ● ● ●●● ● ● ● ● ●●● ● ● ● ● ●●●● ●● ●●●● ● ● ● ●● ● ● ●●● ●● ●● ● ●● ● ● ● ●●● ●●●●● ● ● ● ● ●● ●●● ● ● ● ● ● ●● ● ●● ● ● ●● ● ●● ●●● ● ●● ● ● ●● ● ●● ● ●●●●● ● ● ● ●●●● ●● ● ●● ● ●● ● ●●● ● ● ● ●● ●● ●●● ● ● ● ● ●● ●●●● ● ●● ●● ● ● ●● ●● ● ●● ● ●● ●● ● ●●● ●● ●● ●● ● ● ●●● ●● ●● ●● ● ●●●● ● ● ●●●●●●●●●● ●●● ●● ● ●●● ● ● ●● ● ●● ● ● ● ●●●● ● ●● ● ● ● ●● ●● ● ● ●● ● ● ●●●● ● ●●● ●●● ●● ● ● ●● ● ●● ● ● ●●●● ● ●● ● ● ●● ● ●● ●● ●● ●● ●●● ● ●● ● ●● ● ●●● ●● ●● ●● ● ● ●● ● ● ● ●● ● ●●●●● ● ●● ●● ● ● ●● ● ● ●● ●● ●●● ● ●● ● ● ●● ● ●●● ●●● ●● ●● ●● ●●●● ● ● ● ●●●● ● ●● ●●●● ●● ● ●● ● ●● ●● ● ●●● ●●● ●● ● ●● ●● ●● ●●● ● ● ●● ● ●● ● ● ● ● ●● ●● ● ●● ● ●● ● ● ● ●● ●● ●● ● ● ● ● ●● ●●● ●● ● ●●● ● ● ● ● ●●● ● ● ●● ●●● ● ●●●●● ● ● ●● ● ●● ●●●● ●● ● ●●● ●● ● ●● ●● ● ● ●● ● ● ● ●●● ● ●●● ●● ● ● ● ●●● ● ● ●● ●● ● ●●● ● ●● ● ●● ● ● ●● ●● ● ●●●● ●● ● ● ●● ● ● ●● ● ● ●●● ● ● ●● ●● ●● ●●● ●● ● ● ●● ●● ●●● ●●● ●● ●● ●● ● ● ● ●●● ● ● ●●● ● ● ●●●● ●● ● ●●● ● ●● ● ● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●●● ● ● ● ● ●●●●● ●● ● ● ●● ●●● ●●● ●● ● ●●● ● ●● ●● ● ●●● ● ● ● ●●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●●● ● ●●● ●● ● ● ● ● ●● ●● ●● ●● ●● ●●● ●●●● ● ●● ● ●● ● ●● ●●●● ● ●●● ●● ● ●● ● ● ● ●● ● ●● ● ● ●● ●● ● ●●● ●● ● ●●● ● ●● ●● ●● ● ●● ●●● ●●● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●●● ● ●● ●● ● ●● ● ●● ●● ●● ● ● ●● ●● ●●●● ● ● ●●●● ●● ● ● ●● ● ●●●●● ● ● ●●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●●● ●● ● ●●●● ●●● ●● ●● ●●● ● ● ●● ● ●● ● ●● ● ●● ●●● ●●● ●●● ●● ●● ● ● ●●● ● ●● ●●● ● ●●● ● ● ●● ● ●● ● ● ●● ●● ● ●● ● ●● ● ●● ● ●●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●● ●● ● ● ●● ●●●● ● ● ●●● ●● ●● ● ●● ● ●●●● ● ●● ●● ●●● ● ●●● ●●● ●●● ● ●● ●●● ●● ●● ● ● ●●● ●● ●●● ●●● ●●●● ● ●●● ● ●● ● ●●● ● ● ●●● ●● ●● ● ● ●●● ●● ●● ●● ●●●● ●● ●● ● ●●●●● ● ●● ●● ● ●● ●● ● ● ● ●●● ● ●●● ●●● ●● ● ●● ● ●●● ●● ● ●● ●●● ● ●● ●● ●● ● ● ●● ● ●● ●● ●● ●●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●● ●● ●●●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●● ● ●● ● ●● ● ● ●●●●● ●●● ● ●●●●

●

●

1 10 100 1000 10000

10
50

10
0

50
0

50
00

50
00

0
foaf:knows relations

pr
od

uc
ed

 tr
ip

le
 in

 o
ne

 w
ee

k

Fig. 5. Scatter plot with logarithmic axes of related accounts vs. the
number of created outgoing triples after one week of social network
activity (taken from [1], uncleaned).

ues not suitable for our approach (see below), we
cleaned the data by eliminating outliers in both dimen-
sions. The average size of outgoing triples for all pro-
files after one week of activity is 1589 triples. The av-
erage amount of related contacts in the cleaned data is
225. We used these values as an artificial point in the
graph and identified one single account which had the
smallest distance to this point. This account was used
for the query evaluation.

The motivation behind this approach is to evaluate
the average performance of a DSSN node. In [12] we
analyzed the correlation between knowledge base size
and query performance. This setup simplifies these re-
sults and assumes a linear correlation which is accept-
able in the context of this evaluation.

The evaluated account has 212 foaf:knows rela-
tions with other accounts, shared 113 foreign notes and
posted 5 original notes in one week. With this activi-
ties, the owner produced 1425 triples (incl. his profile).
In addition to that, he received 396346 triples from his
friends over Linked Data and PubSubHubbub.

We used this graph and executed the introduced
queries on the three different systems, described in
Section 4.2.2. Table 2 shows the average execution
time in milliseconds after 5 runs for each query.

The results show, that querying this data is possi-
ble at least on real triple stores and with a moderate
time frame. Using a DSSN node on a dedicated server

https://github.com/alohaeditor/rdfQuery

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 17

Table 2
Runtime (in ms) of different evaluation queries

Query Server FreedomBox Smartphone

Q1 (posts) 35 71 41325
Q2 (facets) 150 312 37558

Q3 (birthdays) 29 36 11324
Q4 (titles) 522 2205 n/a

should even work with much more data. The results
from the smartphone demonstrate a gap of working
triple store implementations for HTML5 applications.

Query 1 - 3 are similar in its structure since they
combine at least two graph patterns with one or two
filter. Query 2 is the slowest here since it uses graph
pattern most which results in a query plan with many
joins. Query 1 uses an ORDER clause on a big result set
(all status notes timestamps). This may be the reason
for being the slowest query on the smartphone.

Query 4 is hardest query in our experiment, since it
does not use any graph pattern which can be used for
filtering on index level. Instead it uses two complex fil-
ter which have to be evaluated on a lot of triple. Given
these results, we will consider a different query strat-
egy for querying the title attributes. One option is to
send a query for each resource thus allow to restrict the
index based on the subject.

The huge amount of data which is received by
DSSN nodes in a realistic environment should be con-
trolled not only by faster triple stores and more hard-
ware, but also by implementing smart interfaces which
cache at the right places and pre-calculate many inter-
face elements fostering a faster user experience.

As a nice spin-off, this evaluation demonstrates how
social network federation can be achieved if semantic
interoperability is guaranteed. If a user wants to fed-
erate her DSSN node with other social networks, a se-
mantic agent can easily fetch and write data from so-
cial network APIs, translate it to RDF and publish it
as Linked Data including the discoverable services de-
scribed in Section 2. The RDF translation can more-
over be realized by the user’s own DSSN node so that
the user can be in full control of her data.

5. Related Work

Most Social Web applications operate as silos of in-
formation. This model poses some drawbacks such as
the lack of interoperability between applications, hav-
ing a one-single ownership model, the inability in fully

exporting data as well as the opacity in using or trans-
mitting private data. These challenges are the reasons
for addressing a distributed model. Various architec-
tures for achieving a federated social network have
been proposed and numerous projects based on those
architectures have been developed to provide conve-
nient functionality to the users. With the advent of the
Semantic Web, research in this field was adapted to
taking advantage of machine-readable data and ontolo-
gies. We can roughly divide the related work into dis-
tributed social networks on the Web 2.0 and distributed
social networks on the Semantic Web.

Distributed social networks on the Web 2.0. The
distributed social network model emerged to over-
come shortcomings attributed to centralized models.
The foundation of the distributed model lies on a set
of standards and technologies. This set of standards
and protocols, which together are referred to as Open
Stack, contains Rss, PubSubHubbub, Webfinger, Activ-
ityStreams, Salmon, OAuth authorization, OpenID au-
thentication, Portable Contacts, Wave Federation Pro-
tocol, OpenSocial widget, XRD, OStatus and DSNP36.
For instance, the Webfinger protocol enables users to
make email addresses valuable by adding metadata.
Some of the projects which were developed using
these technologies are: StatusNet37, DiSo38, GNU So-
cial39, The Mine Project40, Appleseed41, OneSocial-
Web42, BuddyPress43, Cliqset44, Posterous45 and Di-
aspora46. These projects differ in the employed proto-
cols and federation policy. The focus in projects such
as DiSo, The Mine Project, Appleseed and BuddyPress
is on equipping people with tools and functionalities.
They allows users to build her own networks which
enable them to manage and share data and relations.
For instance, DiSo builds WordPress plugins by build-
ing up on OpenID, microformats and OAuth. It cre-
ates open and interoperable building blocks for launch-
ing decentralized social networks. In contrast, another
strategy is to bridge between social networks to make
a joint network. In a short overview, StatusNet is a mi-

36http://www.complang.org/dsnp/
37http://status.net/
38http://diso-project.org/
39http://foocorp.org/projects/social/
40http://themineproject.org/
41http://opensource.appleseedproject.org/
42http://onesocialweb.org/
43http://buddypress.org/
44http://cliqset.com/
45https://posterous.com/
46https://www.joindiaspora.com/

18 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

croblogging platform which extends OStatus for pro-
viding federated status updates; GNU Social is de-
signed above StatusNet as a decentralized social net-
work; OneSocialWeb aims at connecting social net-
works by employing XMPP [17] for instant messag-
ing. Diaspora also uses XMPP, buddycloud channels
and Activity Streams for federation.

Centralized models benefit from short development
time, no required routing, central control and storage
as well as data mining capabilities. In addition to that,
using distributed models is solely subject to disadvan-
tages e.g. reachability of interlinked data or the mainte-
nance of many peers. While a federated model as a hy-
brid model improves some of those disadvantages (e.g.
reachability maybe higher, since number of peers may
be smaller), some of them still remain (e.g. full control
over your owned data). There are many different views
for tackling distributed social network challenges on
the way to a federation in the Web 2.0. A well-known
view is the network of networks, which employs exist-
ing protocols and standards for providing foundations
on the basis of which networks can easily communi-
cate with each other.

Another view is using mashups. Mashups are Web
applications that combine data from more than one ser-
vice provider to create new services. An example is
the buddycloud project47, running an inbox server as
a centralized manager over federated social networks.
This server aggregates all the posts and updates from
social networks to which a user has subscribed. Here
again, the XMPP protocol [17] is used for messaging
and federation.

A user-centric architecture, used in Danube48, em-
ploys individuals for maintaining personal data and re-
lations. It allows them to manage their relationships
with each other and with vendors. Another analogous
view has been proposed by PrPl [19] as a person-
centric, social networking infrastructure, where a per-
son’s data is logically collected in one place, and so-
cial networking applications can be executed in a dis-
tributed manner without a central service.

Distributed Social Networks on Semantic Web. Pri-
marily, attempts have concentrated on the conforma-
tion of traditional technologies such as microblog-
ging, instant messaging or pingback for Semantic Web.
Thus, these adapted technologies can form the basis
for a new generation of social networks. SMOB is a

47http://buddycloud.com/
48http://projectdanube.org

semantic and distributed microblogging framework in-
troduced in [13]. It presents some main requirements
for using microblogging at a large scale, i.e. machine-
readable metadata, a decentralized architecture, open
data as well as re-usability and interlinking of data.
These challenges have been addressed in SMOB by us-
ing RDF(a)/OWL data, distributed Hubs for exchang-
ing information and a sync protocol (based on SPAR-
QL/Update over HTTP) and interlinking components.
sparqlPuSH [14] utilizes the PubSubHubbub protocol
to broadcast RDF query result updates. In this project,
a SPARQL query which is associated with the agent is
at first created and monitored in an RDF triple store.
The registered user is notified whenever the result set
changes.

Two important prerequisites for establishing a dis-
tributed social network on the Semantic Web is firstly
to transform social network data into RDF and sec-
ondly, to aggregate the exported datasets by linking be-
tween person instances in different datasets. For the
former prerequisite, an appropriate ontology is essen-
tial for representing social data. FOAF (Friend of a
Friend) [7], which specifies how to describe personal
information and relationships with other people in a
social network, is well-suited for this purpose. The
SIOC project [6], also extends FOAF in order to de-
scribe rich social data. The work presented in [5] uses
SIOC regarding the representation of blog and book-
mark content. For the second prerequisite, a graph
matching model is needed for providing linkages. The
work which has been carried out by [16] describes a
method for interlinking user profiles from different so-
cial networks such as Facebook, MySpace and Twitter.
The core idea is to generate RDF graphs, which can
then be interlinked based on the corresponding user
identifiers in each graph.

Beyond these activities, an infrastructure is neces-
sary to which these technologies can be employed. Our
current work is a pioneer effort in integrating current
technologies into a coherent architecture to form a dis-
tributed social network in a semantic-based context.

6. Conclusions and Future Work

In this article we described our reference architec-
ture and proof-of-concept implementation of a dis-
tributed social network based on semantic technolo-
gies. Compared with the currently prevalent central-
ized social networks, this approach has a number of
advantages regarding privacy, data security, data own-

S.Tramp et al. / An Architecture of a Distributed Semantic Social Network 19

ership, extensibility, reliability and freedom of com-
munication. However, the work presented in this ar-
ticle can only be a first step of a larger research
and development agenda aiming at realizing a truly
distributed social network based on semantic tech-
nologies. Our implementation, for example, based on
the OntoWiki technology platform is currently only
a proof-of-concept implementation. As shown in the
evaluation section, RDF triple stores, which are the
foundation of any DSSN node, need to be enhanced,
in particular from the mobile computing point of view.
For a widespread use, the usability, scalability and the
multi-client capabilities have to be improved. Like-
wise, the distributed realization of social networking
applications (apps) as implemented in centralized so-
cial networks through APIs (e.g. Open Social) has to
be investigated. We also expect that the combination
of standards and protocols as described in this article
will be implemented in a number of additional plat-
forms (e.g. Wordpress and Drupal), thus making them
first-class nodes of the DSSN.

Acknowledgments

We would like to thank our colleagues from AKSW
research group (in particular Jonas Brekle, Nadine
Jänicke and Norman Heino) for their helpful com-
ments and inspiring discussions during the develop-
ment of this approach. This work was partially sup-
ported by a grant from the European Union’s 7th
Framework Programme provided for the project LOD2
(GA no. 257943).

References

[1] Fabian Abel, Ilknur Celik, Geert-Jan Houben, and Patrick
Siehndel. Leveraging the Semantics of Tweets for Adap-
tive Faceted Search on Twitter. In Lora Aroyo, Chris Welty,
Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal,
Natasha Fridman Noy, and Eva Blomqvist, editors, The Seman-
tic Web - ISWC 2011 - 10th International Semantic Web Con-
ference, Bonn, Germany, October 23-27, 2011, Proceedings,
Part I, volume 7031 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2011.

[2] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian
Hellmann, and David Aumueller. Triplify: light-weight linked
data publication from relational databases. In Juan Quemada,
Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl, editors,
Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009,
pages 621–630. ACM, 2009.

[3] Sören Auer, Sebastian Dietzold, and Thomas Riechert. On-
toWiki - A Tool for Social, Semantic Collaboration. In Isabel F.
Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, edi-
tors, The Semantic Web - ISWC 2006, 5th International Seman-
tic Web Conference, ISWC 2006, Athens, GA, USA, November
5-9, 2006, Proceedings, volume 4273 of Lecture Notes in Com-
puter Science, pages 736–749. Springer, 2006.

[4] Tim Berners-Lee. Linked Data - Design Issues. website. last
change: 2009/06/18; retrieved: 2011/07/25.

[5] Uldis Bojars, Alexandre Passant, Richard Cyganiak, and John
Breslin. Weaving SIOC into the Web of Linked Data. In Chris-
tian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee,
editors, Proceedings of the Linked Data on the Web Workshop,
volume 369 of CEUR Workshop Proceedings, Beijing, China,
April 2008. CEUR-WS.org.

[6] John G. Breslin, Stefan Decker, Andreas Harth, and Uldis Bo-
jars. SIOC: an approach to connect web-based communities.
International Journal of Web Based Communities, 2(2):133–
142, 2006.

[7] Dan Brickley and Libby Miller. FOAF Vocabulary Specifica-
tion. Namespace Document 2 Sept 2004, FOAF Project, 2004.
http://xmlns.com/foaf/0.1/.

[8] Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan, R. Scott
Cost, Yun Peng, Pavan Reddivari, Vishal Doshi, and Joel
Sachs. Swoogle: a search and metadata engine for the semantic
web. In David A. Grossman, Luis Gravano, ChengXiang Zhai,
Otthein Herzog, and David A. Evans, editors, Proceedings of
the 2004 ACM CIKM International Conference on Information
and Knowledge Management, Washington, DC, USA, Novem-
ber 8-13, 2004, pages 652–659. ACM, 2004.

[9] Maxwell Krohn, Alex Yip, Micah Brodsky, Robert Morris, and
Michael Walfish. A World Wide Web Without Walls. In 6th
ACM Workshop on Hot Topics in Networking (Hotnets), At-
lanta, GA, USA, November 2007.

[10] Stuart Langridge and Ian Hickson. Pingback 1.0. Tech-
nical report, http://hixie.ch/specs/pingback/
pingback, 2002.

[11] Michele Minno and Davide Palmisano. Atom Activity Streams
RDF mapping. NoTube Project, 2010. http://xmlns.
notu.be/aair/.

[12] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-
Cyrille Ngonga Ngomo. DBpedia SPARQL Benchmark - Per-
formance Assessment with Real Queries on Real Data. In
Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abra-
ham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva
Blomqvist, editors, The Semantic Web - ISWC 2011 - 10th In-
ternational Semantic Web Conference, Bonn, Germany, Octo-
ber 23-27, 2011, Proceedings, Part I, volume 7031 of Lecture
Notes in Computer Science, pages 454–469. Springer, 2011.

[13] Alexandre Passant, John G. Breslin, and Stefan Decker. Re-
thinking Microblogging: Open, Distributed, Semantics. In
Boualem Benatallah, Fabio Casati, Gerti Kappel, and Gustavo
Rossi, editors, Web Engineering, 10th International Confer-
ence, ICWE 2010, Vienna, Austria, July 5-9, 2010. Proceed-
ings, volume 6189 of Lecture Notes in Computer Science,
pages 263–277. Springer, 2010.

[14] Alexandre Passant and Pablo N. Mendes. sparqlPuSH: Proac-
tive Notification of Data Updates in RDF Stores Using Pub-
SubHubbub. In Gunnar Aastrand Grimnes, Sören Auer, and
Gregory Todd Williams, editors, Proceedings of the Sixth

http://hixie.ch/specs/pingback/pingback
http://hixie.ch/specs/pingback/pingback
http://xmlns.notu.be/aair/
http://xmlns.notu.be/aair/

20 S.Tramp et al. / An Architecture of a Distributed Semantic Social Network

Workshop on Scripting and Development for the Semantic Web,
Crete, Greece, May 31, 2010, volume 699 of CEUR Workshop
Proceedings. CEUR-WS.org, 2010.

[15] Christoph Rieß, Norman Heino, Sebastian Tramp, and Sören
Auer. EvoPat - Pattern-Based Evolution and Refactoring of
RDF Knowledge Bases. In Peter F. Patel-Schneider, Yue Pan,
Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Hor-
rocks, and Birte Glimm, editors, The Semantic Web - ISWC
2010 - 9th International Semantic Web Conference, ISWC
2010, Shanghai, China, November 7-11, 2010, Revised Se-
lected Papers, Part I, volume 6496 of Lecture Notes in Com-
puter Science, pages 647–662. Springer, 2010.

[16] Matthew Rowe. Interlinking Distributed Social Graphs. In
Christian Bizer, Tom Heath, Tim Berners-Lee, and Kingsley
Idehen, editors, Proceedings of the Linked Data on the Web
Workshop (LDOW2009), volume 538 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2009.

[17] Peter Saint-Andre. Extensible Messaging and Presence Proto-
col (XMPP): Core. Request for Comments 3920, IETF, Octo-
ber 2004. http://www.ietf.org/rfc/rfc3920.txt.

[18] Felix Schwagereit, Ansgar Scherp, and Steffen Staab. Rep-
resenting distributed groups with dgfoaf. In Lora Aroyo,
Grigoris Antoniou, Eero Hyvönen, Annette ten Teije, Heiner
Stuckenschmidt, Liliana Cabral, and Tania Tudorache, edi-
tors, The Semantic Web: Research and Applications, 7th Ex-
tended Semantic Web Conference, ESWC 2010, Heraklion,
Crete, Greece, May 30 - June 3, 2010, Proceedings, Part II,
volume 6089 of Lecture Notes in Computer Science, pages
181–195. Springer, 2010.

[19] Seok-Won Seong, Jiwon Seo, Matthew Nasielski, Debangsu
Sengupta, Sudheendra Hangal, Seng Keat Teh, Ruven Chu,
Ben Dodson, and Monica S. Lam. PrPl: a decentralized social
networking infrastructure. In Rick Han and Li Erran Li, edi-
tors, Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond, MCS
’10, pages 8:1–8:8, 2010.

[20] Manu Sporny, Toby Inkster, Henry Story, Bruno Harbulot,
and Reto Bachmann-Gmür. WebID 1.0: Web identification

and Discovery. Unofficial draft, August 2010. http://
payswarm.com/webid/.

[21] Henry Story, Bruno Harbulot, Ian Jacobi, and Mike Jones.
FOAF+TLS: RESTful Authentication for the Social Web.
In Michael Hausenblas, Philipp Kärger, Daniel Olmedilla,
Alexandre Passant, and Axel Polleres, editors, Proceedings of
the First Workshop on Trust and Privacy on the Social and
Semantic Web (SPOT2009), volume 447 of CEUR Workshop
Proceedings, Heraklion, Greece, Jun 2009. CEUR-WS.org.

[22] Henry Story, Andrei Sambra, and Sebastian Tramp. Friending
On The Social Web. In Evan Prodromou and Jan Schallaböck,
editors, Proceedings of Federated Social Web Europe 2011,
2011.

[23] Sebastian Tramp, Philipp Frischmuth, Timofey Ermilov, and
Sören Auer. Weaving a Social Data Web with Semantic Ping-
back. In Philipp Cimiano and Helena Sofia Pinto, editors,
Knowledge Engineering and Management by the Masses - 17th
International Conference, EKAW 2010, Lisbon, Portugal, Oc-
tober 11-15, 2010. Proceedings, volume 6317 of Lecture Notes
in Computer Science, pages 135–149. Springer, 2010.

[24] Sebastian Tramp, Norman Heino, Sören Auer, and Philipp
Frischmuth. RDFauthor: Employing RDFa for Collabora-
tive Knowledge Engineering. In Philipp Cimiano and He-
lena Sofia Pinto, editors, Knowledge Engineering and Manage-
ment by the Masses - 17th International Conference, EKAW
2010, Lisbon, Portugal, October 11-15, 2010. Proceedings,
volume 6317 of Lecture Notes in Computer Science, pages 90–
104. Springer, 2010.

[25] Giovanni Tummarello, Renaud Delbru, and Eyal Oren.
Sindice.com: Weaving the Open Linked Data. In Karl Aberer,
Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-
Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika,
Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and
Philippe Cudré-Mauroux, editors, The Semantic Web, 6th In-
ternational Semantic Web Conference, 2nd Asian Semantic
Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15, 2007, volume 4825 of Lecture Notes in Com-
puter Science, pages 552–565. Springer, 2007.

http://payswarm.com/webid/
http://payswarm.com/webid/

	Introduction
	Architecture of a Distributed Semantic Social Network
	- Basic Design Principles
	- Data Layer
	- Protocol Layer
	- Service Layer
	- Application Layer
	DSSN Implementation for OntoWiki
	- Creating and Updating Data Artefacts
	- Maintaining Social Network Connections
	- Ignoring Activities and WebIDs
	- Generating and Distributing Activities
	- Pingback Integration
	Evaluation
	- Qualitative Evaluation: Social Web Acid Test
	- Quantitative Evaluation: DSSN Performance
	Related Work
	Conclusions and Future Work

